Evidence for age-related cochlear synaptopathy unconnected to auditory temporal processing deficits

Enrique A. Lopez-Poveda, Peter T. Johannesen, Byanka C. Buzo

University of Salamanca, Salamanca, Spain

E-mail: ealopezpoveda@usal.es

Motivation

Cochlear synaptopathy [1] may degrade the neural coding of temporal sound features, hence underlie age-related temporal processing deficits. We investigated the potential contribution from synaptopathy and cochlear deficits to age-related deficits in temporal integration, gap detection [2], and frequency-modulation detection [3, 9].

Hypotheses

- 1. Synaptopathy hinders brief-tone detection, hence steepens threshold-duration function slope (TDS) [4].
- 2. Synaptopathy increases gap-detection thresholds (GDTs) and frequency-modulation detection thresholds (FMDTs).

Synaptopathy metric

Based on findings in rodents [1, 5], we assumed that synaptopathy reduces the rate of growth of ABR wave-I amplitude with increasing stimulus intensity.

Methods

Participants

 N=61/66/45 (TDS/GDT/FMDT) 24-68 yr. (median = 25 yr.)

Absolute thresholds

Pure tones.

 1-ms onset/offset ramps 		
	kHz	Duration (ms)
	0.5	5, 10, 20, 500
	1.5	2, 5, 10, 20, 500
	4.0	2, 5, 10, 20, 500
	8.0	2, 5, 10, 20, 500
	12.0	5, 500

Analysis. TDS

Straight lines were fitted to tone thresholds (2-20 ms) and slopes adjusted for audiometric loss (long-tone thresholds)

- Rarefaction clicks.
- 90:5:110 ppe dB SPL
- Rate: 11 clicks/sec.
- Filtering: 0.1-3 kHz.
- 2048 to 8192 sweeps.

Results. Evidence for age-related but not noise related synaptopathy

Results. Temporal integration

FMDTs increased with

increasing age, consistent

with earlier studies [9].

But FMDTs were not

correlated with wave I

slope, suggesting that

age-related frequency-

modulation detection

deficits are not due to

synaptopathy.

Results. Frequency modulation detection

Acknowledgements

Work funded by the Oticon Foundation, MINECO (ref. BFU2015-65376-P), Junta de Castilla y León (SA023P17), European Regional Development Fund, and CNPQ. We thank Filip Rønne, Niels H. Pontoppidan and James M. Harte for useful discussions.

Results. Gap detection

Results. Noise exposure

Lifetime noise exposure was not correlated with TDSs, FMDTs or GDTs.

Discussion

- Adjusted TDSs were not larger with increasing age nor were they correlated with threshold-adjusted ABR wave I slope.
- FMDTs were larger with increasing age but were not correlated with ABR slope.
- GDTs were longer with increasing age and shallower ABR slope but not after accounting for the effects of thresholds.

Kev findings

- 1. Frequency-modulation detection and gap detection (but not brief-tone detection) were poorer with increasing age.
- 2. These age-related temporal processing deficits were somewhat correlated with audiometric losses, but not with threshold-adjusted ABR wave I slope.
- 3. Hence, synaptopathy unlikely contributed to those deficits.

References

[1] Kujawa & Liberman, 2009, J. Neurosci. 29:14077:14085. [6] Florentine et al., 1988, JASA 84:195-203. [2] Schneider & Hamstra, 1999, JASA, 106:371:380. [3] Moore & Sek. 1996. JASA:100:2320:2331. [4] Marmel et al., 2014, Front. Aging Neurosci. 7:63

[5] Furman et al., 2013, J. Neurophysiol, 110:577-58 [7] Beach et al., 2013, Int. J. Audiol, 52: S20-S25. [8] Levitt, 1971, JASA 49:466-477, [9] He et al., 2007, JASA, 122:467-477

Frequency modulation detection Pure tone carrier, 1.5 kHz 30 & 60 dB SL 2 Hz modulation rate

(AYE = 8 h at 85 dBA over 220 days) [7].

Participants audiograms

1 2 3 4 Frequency (kHz

Questionnaire estimating number of

years of acceptable yearly exposure

N=94

Gap detection

Noise exposure

- Pure tone markers (2 kHz). Durations 5 & 50 ms. 1-ms ramps
- 80 dB SPL ER-2 insert phones.
- 3AFC, one-up, two-down [8].

Analysis. ABR

Straight lines were fitted to wave I amplitude-level function and slopes (in µV/dB) adjusted for high-frequency thresholds.

