
II. Description of the project

1. Develop ‘generic’ computational models of CI outcomes
2. Individualize predictions based on fitted parameters
3. Simplify the model to make it useful for clinical applications

III. Description of candidate auditory nerve model for electrical stimulation

• Developed by Goldwyn et al. (2012)1.
• Cascade of linear and non-linear stages followed by a probabilistic generator.
• Inspired by GLM class of point process neuron models3.

Tapez une équation ici.

IV. Example application: Speech in noise V. Further directions and open questions
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Long-term goal: To predict psychophysical outcomes for individual CI users from 1) a given coding strategy, and 2) 
listener-specific characteristics (current spread, neural survival, facilitation, etc...)

Cochlear-implant (CI) processing strategies aim to faithfully transmit information from the acoustic input signal to the
auditory nerve via electrical pulsatile sequences. Many studies still observe important behavioral gaps between CI and
normal hearing listeners due to suboptimal encoding of acoustic cues. Our aim is to develop computational models of CI
outcomes to easily compare coding strategies and assess the potential benefit they could provide to individual CI listeners.
While many models already exist for normal-hearing listeners to predict performance from the acoustic stimulus (e.g.
speech intelligibility, binaural hearing, pitch and loudness discrimination …), equivalent models for CI listeners need to be
developed.

I. Introduction
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Assumption: All of the information is 
encoded in the spike times of the auditory 
nerve.

Assumptions (as a first step):
- One auditory nerve fiber per channel
- No current spread 
- Identical auditory nerve fibers
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Quantify the amount of information at the neural level

Different metrics could be used to describe
information transmission:

- Root Mean Square Error (RMSE)

- Variation of information (information theory)

- Cross-correlation methods

- Neurogram Similarity Index Measure (NSIM)2
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Adaptation 

Computation time ~40s for 1 
electrodogram
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fs = 1 MHz)

What strategy transmits the most information to a given listener? 

How do different pathologies affect information transmission?

Compare different coding strategies (eg CIS or any in-development strategy) 

Individualized predictions by characterizing physiological factors in each patient (eg 
insertion depth, neural survival, refractoriness, facilitation, etc…) 
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Question of the reference

Compare electrical neurogram with spectrogram

Objective 2
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So far the assessment of information loss in a given neurogram is being
performed relative to a reference neurogram, where the reference is assumed
to contain the maximum information accessible to an ideal (human) listener. 
Therefore the choise of reference is important and multiple alternatives will be
considered.

Compare electrical and acoustical neurograms
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One reference could be the neurogram resulting from a normal-hearing auditory
pathway. The metric then quantifies the loss of information relative to the 
“perfect” transmission. 

The spectogram could also be regarded as the best representation possible of the 
temporal and spectral information contained in any audio stimulus. Here the idea
is to quantify/identify what information is transmitted, regardless of what would
happen with a healthy peripheral auditory system.
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