Publications


Peer-reviewed papers

  1. Fumero MJ, Marrufo-Pérez MI, Eustaquio-Martín A, Lopez-Poveda EA. (2024). Factors that can affect divided speech intelligibility. Hearing Research 441:108917. doi: http://doi.org/10.1016/j.heares.2023.108917.

  2. Gómez-Álvarez M, Johannesen PT, Coelho-de-Sousa SL, Klump GM, Lopez-Poveda EA. (2023). The Relative Contribution of Cochlear Synaptopathy and Reduced Inhibition to Age-Related Hearing Impairment for People With Normal Audiograms. Trends in Hearing 2023 27:23312165231213191. doi: http://doi.org/10.1177/23312165231213191.

  3. San-Victoriano FM, Eustaquio-Martín A, Lopez-Poveda EA. (2023). Binaural pre-processing for contralateral sound field attenuation can improve speech-in-noise intelligibility for bilateral hearing-aid users. Hearing Research 432:108743. https://doi.org/10.1016/j.heares.2023.108743

  4. Leclère T, Johannesen PT, Wijetilake A, Segovia-Martínez M, Lopez-Poveda EA. (2023). A computational modelling framework for assessing information transmission with cochlear implants. Hearing Research 432:108744. https://doi.org/10.1016/j.heares.2023.108744

  5. Johannesen PT, Leclère T, Wijetilake A, Segovia-Martínez M, Lopez-Poveda EA. (2022). Modeling temporal information encoding by the population of fibers in the healthy and synaptopathic auditory nerve. Hearing Research 426:108621. https://doi.org/10.1016/j.heares.2022.108621

  6. Marrufo-Pérez MI, Lopez-Poveda EA. (2022). Adaptation to noise in normal and impaired hearing. Journal of the Acoustical Society of America 151:1741-1753. Artículo invitado. https://doi.org/10.1121/10.0009802

  7. Fumero MJ, Marrufo-Pérez MI, Eustaquio-Martín A, Lopez-Poveda EA. (2022). Divided listening in the free field becomes asymmetric when acoustic cues are limited. Hearing Research 416:108444. https://doi.org/10.1016/j.heares.2022.108444

  8. Lopez-Poveda EA, Eustaquio-Martín A, San-Victoriano FM. (2022). Binaural pre-processing for contralateral sound field attenuation and improved speech-in-noise recognition. Hear Res. 409: 108469. doi: https://doi.org/10.1016/j.heares.2022.108469.

  9. Fumero MJ, Eustaquio-Martín A, Gorospe JM, Polo López R, Gutiérrez Revilla MA, Lassaletta L, Schatzer R, Nopp P, Stohl JS, Lopez-Poveda EA. (2021). A state-of-the-art implementation of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hear Res. 409:108320. doi: https://doi.org/10.1016/j.heares.2021.108320.

  10. Johannesen PT, Lopez-Poveda EA. (2021). Age-related central gain compensation for reduced auditory nerve output for people with normal audiograms, with and without tinnitus. iScience 24(6):102658. doi: https://doi.org/10.1016/j.isci.2021.102658.

  11. Marrufo-Pérez MI, Araquistain-Serrat L, Eustaquio-Martín A, Lopez-Poveda EA. (2021). On the importance of interaural noise coherence and the medial olivocochlear reflex for binaural unmasking in free-field listening. Hear Res. 405:108246. doi: https://doi.org/10.1016/j.heares.2021.108246.

  12. Marrufo-Pérez MI, Johannesen PT, Lopez-Poveda EA. (2021). Correlation and Reliability of Behavioral and Otoacoustic-Emission Estimates of Contralateral Medial Olivocochlear Reflex Strength in Humans. Front Neurosci. 15:640127. doi: https://doi.org/10.3389/fnins.2021.640127.

  13. Marrufo-Pérez MI, Eustaquio-Martín A, Lopez-Poveda EA. (2020). Adaptation to noise in speech recognition depends on noise-level statistics and fast dynamic-range compression. Journal of Neuroscience 40(34):6613-6623. doi: https://doi.org/10.1523/JNEUROSCI.0469-20.2020.

  14. Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Gorospe JM, Polo López R, Gutiérrez Revilla MA, Schatzer R, Nopp P, Stohl JS. (2020). Speech-in-noise recognition with more realistic implementations of a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Ear and Hearing 41(6):1492-1510. doi: https://doi.org/10.1097/AUD.0000000000000880.

  15. Marrufo-Pérez MI, Eustaquio-Martín A, Lopez-Poveda EA. (2019). Speech predictability can hinder communication in difficult listening conditions. Cognition 192, 103992. doi: https://doi.org/10.1016/j.cognition.2019.06.004.

  16. Lopez-Poveda EA, Eustaquio-Martín A, Fumero MJ, Stohl JS, Schatzer R, Nopp P, Wolford RD, Gorospe JM, Polo R, Gutiérrez Revilla MA, Wilson BS. (2019). Lateralization of virtual sound sources with a binaural cochlear-implant sound coding strategy inspired by the medial olivocochlear reflex. Hearing Research 379:103-116. doi: https://doi.org/10.1016/j.heares.2019.05.004.

  17. Bramhall N, Beach E, Epp B, LePrell CG, Lopez-Poveda EA, Plack C, Schaette R, Verhulst S, Canlon B (2019). The search for noise-induced cochlear synaptopathy in humans: Mission impossible? Hearing Research 377:88-103. doi:  https://doi.org/10.1016/j.heares.2019.02.016.

  18. Marrufo-Pérez MI, Eustaquio-Martín A, Fumero MJ, Gorospe JM, Polo R, Gutiérrez Revilla A, Lopez-Poveda EA. (2019). Adaptation to noise in amplitude modulation detection for cochlear implant users. Hearing Research 377:133-141. doi:  https://doi.org/10.1016/j.heares.2019.03.017.

  19. Johannesen PT, Buzo BC, Lopez-Poveda EA. (2019). Evidence for age-related cochlear synaptopathy in humans unconnected to speech-in-noise intelligibility deficits. Hearing Research 374:35-48. doi: https://doi.org/10.1016/j.heares.2019.01.017

  20. Nogueira W, Büchner A, Krüger B, Lopez-Poveda EA. (2019). Contralateral suppression of human hearing sensitivity in single-sided deaf cochlear implant users. Hearing Research 373:121-129. doi: https://doi.org/10.1016/j.heares.2018.06.001

  21. Marmel F, Marrufo-Pérez MI, Heeren J, Ewert J, Lopez-Poveda EA. (2018). Effect of sound level on virtual and free-field localization of brief sounds in the anterior median plane. Hearing Research 365:28-35. doi: http://doi.org/10.1016/j.heares.2018.06.004

  22.  Lopez-Poveda EA, Eustaquio-Martín A. (2018). Objective speech transmission improvements with a binaural cochlear implant sound-coding strategy inspired by the contralateral medial olivocochlear reflex. J. Acoust. Soc. Am. 143:2217-2231. doi: http://doi.org/10.1121/1.5031028.

  23. Marrufo-Pérez MI, Eustaquio-Martín A, Lopez-Poveda EA. (2018). Adaptation to noise in human speech recognition unrelated to the medial olivocochlear reflex. Journal of Neuroscience 38(17):4138-4145. doi: http://doi.org/10.1523/JNEUROSCI.0024-18.2018  

  24.   Lopez-Poveda EA. (2018). Olivocochlear efferents in animals and humans: From anatomy to clinical relevance. Frontiers in Neurology 9:197. doi: http://doi.org/10.3389/fneur.2018.00197

  25. Marrufo-Pérez MI, Eustaquio-Martín A, López-Bascuas LE, Lopez-Poveda EA. (2018). Temporal effects on monaural amplitude-modulation sensitivity in ipsilateral, contralateral and bilateral noise. J. Assoc. Res. Otolaryngol. 19:147-161. doi: http://doi.org/10.1007/s10162-018-0656-x

  26. Lopez-Poveda EA, Johannesen PT, Pérez-González P, Blanco JL, Kalluri S, Edwards B. (2017). Predictors of hearing aid outcomes. Trends Hear 21:1-28. doi: http://doi.org/10.1177/2331216517730526

  27. Lopez-Poveda EA, Eustaquio-Martin, A, Stohl JS, Wolford RD, Schatzer R, Gorospe JM, Santa Cruz Ruiz S, Benito F, Wilson BS (2017). Intelligibility in speech maskers with a binaural cochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Hearing Research 348:134-137. doi: http://doi.org/10.1016/j.heares.2017.02.003

  28. Johannesen PT, Pérez-González P, Kalluri S, Blanco JL, Lopez-Poveda EA. (2016). The influence of cochlear mechanical dysfunction, temporal processing deficits, and age on the intelligibility of audible speech in noise by hearing-impaired listeners. Trends in Hearing 20:1-14. doi: http://doi.org/10.1177/2331216516641055

  29. Lopez-Poveda EA, Eustaquio-Martin, A, Stohl JS, Wolford RD, Schatzer R, Wilson BS. (2016). A binaural clochlear implant sound coding strategy inspired by the contralateral medial olivocochlear reflex. Ear and Hearing 37(3):e138-e148. doi: http://doi.org/10.1097/AUD.0000000000000273.

  30. Lopez-Poveda EA, Eustaquio-Martin, A, Stohl JS, Wolford RD, Schatzer R, Wilson BS. (2016). Roles of the contralateral efferent reflex in hearing demonstrated with cochlear implants. Adv. Exp. Med. Biol. 894:105-114. doi: http://doi.org/10.1007/978-3-319-25474-6_12

  31. Marmel F, Rodríguez-Mendoza MA, Lopez-Poveda EA (2015). Stochastic undersampling steepens auditory threshold/duration functions: Implications for understanding auditory deafferentation and aging. Frontiers in Aging Neuroscience 7:63. doi: http://doi.org/10.3389/fnagi.2015.00063

  32. Aguilar E, Johannesen PT and Lopez-Poveda EA (2015). Contralateral efferent suppression of human hearing sensitivity. Front. Syst. Neurosci. 8:251. doi: http://doi.org/10.3389/fnsys.2014.00251

  33. Pérez-González P, Johannesen PT, Lopez-Poveda EA. (2014). Forward-masking recovery and the assumptions of the temporal masking curve method of inferring cochlear compression. Trends in Hearing 19:1-14  doi: http://doi.org/10.1177/2331216514564253

  34. Lopez-Poveda EA (2014). Why do I hear but not understand? Stochastic undersampling as a model of degraded neural encoding of speech. Front. Neurosci. 8:348. doi: http://doi.org/10.3389/fnins.2014.00348

  35. Johannesen PT, Pérez-González P, Lopez-Poveda EA. (2014). Across-frequency behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualized audiometric loss. Front Neurosci. 8:214. doi: http://doi.org/10.3389/fnins.2014.00214

  36. Alves-Pinto A, Palmer AR, Lopez-Poveda EA. (2014). Perception and coding of high-frequency spectral notches: potential implications for sound localization. Front Neurosci. 8:112. doi: http://doi.org/10.3389/fnins.2014.00112

  37. Lopez-Poveda EA, Aguilar E, Johannesen PT, Eustaquio-Martin A. (2013). Contralateral efferent regulation of human cochlear tuning: Behavioural observations and computer simulations. Adv Exp Med Biol. 787:47-54. doi: http://doi.org/10.1007/978-1-4614-1590-9_6

  38. Lopez-Poveda EA, Barrios P. (2013). Perception of stochastically undersampled sound waveforms: A model of auditory deafferentation. Frontiers in Neuroscience 7:124. doi: http://doi.org/10.3389/fnins.2013.00124.

  39. Lopez-Poveda EA, Eustaquio-Martín A. (2013). On the controversy about the sharpness of human cochlear tuning. J. Assoc. Res. Otolaryngol. 14(5):673-686. doi: http://dx.doi.org/10.1007/s10162-013-0397-9

  40. Lopez-Poveda EA (2013) Cochlear Inner Hair Cell, Model. In: Jaeger D., Jung R. (Ed.) Encyclopedia of Computational Neuroscience: SpringerReference (www.springerreference.com). Springer-Verlag Berlin Heidelberg, 2013. doi: https://doi.org/10.1007/978-1-4614-7320-6_427-5

  41. Aguilar E, Eustaquio-Martin A, Lopez-Poveda EA (2013). Contralateral efferent reflex effects on threshold and supra-threshold psychoacoustical tuning curves at low and high frequencies. J. Assoc. Res. Otolaryngol. 14(3):341-57. doi: http://doi.org/10.1007/s10162-013-0373-4

  42. Lopez-Poveda EA, Johannesen PT. (2012). Behavioral estimates of the contribution of inner and outer hair cell dysfunction to individualize audiometric loss. J. Assoc. Res. Otolaryngol. 13(4):485-504 . doi: http://doi.org/10.1007/s10162-012-0327-2

  43. Eustaquio-Martín A, LopezPoveda EA (2011). "Isoresponse versus isoinput estimates of cochlear filter tuning," JARO-J. Assoc. Res. Otolaryngol. 12(3):281-299. doi: http://doi.org/10.1007/s10162-010-0252-1

  44. Johannesen PT, Lopez-Poveda EA (2010). "Correspondence between behavioral and individually 'optimized' otoacoustic emission estimates of human cochlear input/output curves," J. Acoust. Soc. Am. 127(6), 3602-3613. doi: http://doi.org/10.1121/1.3377087

  45. Lopez-Poveda EA, Johannesen PT (2009). "Otoacoustic emission theories and behavioral estimates of human basilar membrane motion are mutually consistent," JARO-J. Assoc. Res. Otolaryngol. 10:511-523. doi: http://doi.org/10.1007/s10162-009-0176-9

  46. Lopez-Poveda EA, Johannesen PT, Merchán MA. (2009). "Estimation of the degree of inner and outer hair cell dysfunction from distortion product otoacoustic emission input/output functions," Audiological Medicine 7:22-28.

  47. Johannesen PT, Lopez-Poveda EA. (2008). "Cochlear nonlinearity in normal-hearing subjects as inferred psychophysically and from distortion-product otoacoustic emission input/output functions." J. Acoust. Soc. Am. 124(4), 2149-2163. doi: http://doi.org/10.1121/1.2968692

  48. Alves-Pinto A, Lopez-Poveda EA. (2008). "Psychophysical assessment of the level-dependent representation of high-frequency spectral notches in the peripheral auditory system," J. Acoust. Soc. Am. 124(1), 409-421. doi: http://doi.org/10.1121/1.2920957

  49. Lopez-Poveda EA, Alves-Pinto A. (2008). "A variant temporal-masking-curve method for inferring peripheral auditory compression," J. Acoust. Soc. Am. 123 (3), 1544-1554. doi: http://doi.org/10.1121/1.2835418

  50. Lopez-Poveda EA, Alves-Pinto A, Palmer AR, Eustaquio-Martin A. (2008). "Rate versus time representation of high-frequency spectral notches in the peripheral auditory system: A computational modeling study," Neurocomputing 71/4-6, 693-703

  51. Lopez-Najera A, Lopez-Poveda EA, Meddis R. (2007). "Further studies on the dual-resonance nonlinear filter model of cochlear frequency selectivity: Responses to tones," J. Acoust. Soc. Am. 122(4), 2124-2134. doi: http://doi.org/10.1121/1.2769627

  52. Lopez-Poveda, E. A., Barrios, L. F., Alves-Pinto, A. (2007). "Psychophysical estimates of level-dependent best-frequency shifts in the apical region of the human basilar membrane," J. Acoust. Soc. Am. 121(6), 3646-3654. doi: http://doi.org/10.1121/1.2722046

  53. Lopez-Poveda, E. A., Eustaquio-Martín, A. (2006). "A biophysical model of the inner hair cell: The contribution of potassium current to peripheral compression," JARO-J. Assoc. Res. Otolaryngol. 7(3), 218-235. doi: http://doi.org/10.1007/s10162-006-0037-8
    Biophysical model of the inner hair cell code

  54. Lopez-Poveda, E. A. (2005). "Spectral processing by the peripheral auditory system: Facts and models." Int. Rev. Neurobiology 70, 7-48. doi: http://doi.org/10.1016/S0074-7742(05)70001-5

  55. Merchán, MA, Aguilar, L, Lopez-Poveda, EA, Malmierca, MS. (2005). "Immunocytochemical and semiquantitative study on g-aminobutyric acid and glycine in the inferior colliculus of the rat,” Neuroscience 136. 907-925. doi: http://doi.org/10.1016/j.neuroscience.2004.12.030

  56. Alves-Pinto, A., Lopez-Poveda, E.A. (2005). "Detection of high-frequency spectral notches as a function of level," J. Acoust. Soc. Am. 118, 2458-2469. doi: http://doi.org/10.1121/1.2032067

  57. Wilson BS, Schatzer R, Lopez-Poveda EA, Sun X, Lawson DT, Wolford RD. (2005). "Two new directions in speech processor design for cochlear implants,"  Ear & Hearing, 26, 73S-81S. doi: http://doi.org/10.1097/00003446-200508001-00009

  58. Alves-Pinto, A., Lopez-Poveda, E.A., and Palmer, A. R. (2005). "Auditory nerve encoding of high-frequency spectral information," Lecture Notes in Computer Science 3561, 223-232.

  59. Lopez-Poveda, EA, Plack, CJ, Meddis, R, and Blanco, JL. (2005). "Cochlear compression between 500 and 8000 Hz in listeners with moderate sensorineural hearing loss," Hearing Res. 205, 172-183. doi: http://doi.org/10.1016/j.heares.2005.03.015

  60. Lopez-Poveda, EA (2004). "Reply to Comment on "An approximate transfer function for the dual resonance nonlinear filter model of auditory frequency selectivity"," J. Acoust. Soc. Am. 115 (5) Part 1: 1891-1891.

  61. Plack, CJ, Drga, V, and Lopez-Poveda, EA (2004). "Inferred basilar-membrane response functions for listeners with mild to moderate sensorineural hearing loss," J. Acoust. Soc. Am. 115, 1684-1695. doi: http://doi.org/10.1121/1.1675812

  62. Aguilar, LA, Malmierca, MS, Coveña, R, Lopez-Poveda, EA, Tramu, G, and Merchán, M. (2004) “Immunocytochemical distribution of Met-enkephalin-Arg6-Gly7-Leu8 (Met-8) in the auditory system of the rat,” Hear. Res. 187, 111-121. doi: http://doi.org/10.1016/s0378-5955(03)00333-2

  63. Lopez-Poveda, EA. (2003) “An approximate transfer function for the dual-resonance nonlinear filter model of auditory frequency selectivity,” J. Acoust. Soc. Am. 114, 2112-2117. doi: http://doi.org/10.1121/1.1605389

  64. Malmierca, MS, Hernández, O, Falconi, A, Lopez-Poveda, EA, Merchán, M, and Rees, A. (2003). “The commissure of the inferior colliculus shapes frequency response areas in rat: an in vivo study using reversible blockade with microinjection of kynurenic acid,” Exp. Brain Res. 153, 522-529. doi: http://doi.org/10.1007/s00221-003-1615-1

  65. Sumner, C, O'Mard, LPO, Lopez-Poveda, EA, and  Meddis, R (2003).  “A non-linear filter-bank model of the guinea-pig cochlear nerve” J. Acoust. Soc. Am. 113, 3264-3274. doi: http://doi.org/10.1121/1.1568946

  66. Lopez-Poveda, EA, Plack, CJ, and  Meddis, R. (2003).  “Cochlear nonlinearity between 500 and 8000 Hz in normal-hearing listeners,” J. Acoust. Soc. Am. 113, 951-960. doi: http://doi.org/10.1121/1.1534838

  67. Sumner, C, Lopez-Poveda, EA, O'Mard, LPO, and Meddis, R. (2003). "Adaptation in a revised model of the inner-hair cell J. Acoust. Soc. Am. 113, 893-901. doi: http://doi.org/10.1121/1.1515777

  68. Sumner, C, Lopez-Poveda, EA, O'Mard, LPO and Meddis, R.  (2002).  “A revised model of the inner hair cell and auditory nerve complex," J. Acoust. Soc. Am. 111 (5): 2178-2188. doi: http://doi.org/10.1121/1.1453451

  69. Lopez-Poveda, EA, and Meddis, R. (2001).  "A human nonlinear cochlear filterbank," J. Acoust. Soc. Am. 110 (6): 3107-3118. doi: http://doi.org/10.1121/1.1416197

  70. Meddis, R, O'Mard, LPO, and Lopez-Poveda, EA.  (2001).  "A computational algorithm for computing non-linear auditory frequency selectivity," J. Acoust. Soc. Am. 109 (6): 2852-2861. doi: http://doi.org/10.1121/1.1370357

  71. Lopez-Poveda, EA, and Meddis, R.  (1996).  "A physical model of sound diffraction and reflections in the human concha," J. Acoust. Soc. Am. 100(5): 3248-3259. doi: http://doi.org/10.1121/1.417208

Other papers

  1. López-Poveda EA. (2023). Simulation of the efferent system in the coding strategies of cochlear implant systems. Z Audiologie 62 (Suppl 4):21-22

  2. San Victoriano FM, Lopez-Poveda EA. (2021). La audición binaural y el uso de audífonos e implantes cocleares. Revista de Acústica 52(3-4):3-14.

  3. Johannesen PT, Pérez-González P, Kalluri S, Blanco JL, Lopez-Poveda EA. (2015). Predictors of supra-threshold speech-in-noise intelligibility by hearing-impaired listeners. Proc. Int. Symp. Auditory & Audiol. Res. (ISAAR 2015) 26-28 Agosto 2015, Nyborg (Denmark).

  4. Pérez-González P, Gorospe JM, Lopez-Poveda EA. (2013). A Castilian Spanish digit triplet identification test for assessing speech intelligibility in quiet and in noise. Revista de Acústica 45:13-24.

  5. Pérez-González P, Lopez-Poveda EA. (2013) Level-dependent effects on speech intelligibility. POMA-Proc. Meetings on Acoustics 19, 050065. doi: http://dx.doi.org/10.1121/1.4799559

  6. Lopez-Poveda EA, Barrios P (2013). A perceptual model of auditory deafferentation. POMA-Proceedings of Meetings on Acoustics 19, 050181. doi: http://dx.doi.org/10.1121/1.4799546

  7. Lopez-Poveda, E. A.; Alves-Pinto, A.; Palmer, A. R.; Eustaquio-Martín, A. (2007). The representation of high-frequency spectral notches in the peripheral auditory system: a computational model study. Proc. 19th International Congress on Acoustics, published in Revista de Acústica 38 (3-4).

  8. López-Nájera, A.; Meddis, R.; López-Poveda, E. A. (2007). Simulating cochlear frequency selectivity: the TRNL filter. Proc. 19th International Congress on Acoustics, published in Revista de Acústica 38 (3-4).

  9. Lopez-Poveda, EA, and Meddis, R (2005). “Oídos artificiales,” Mente y Cerebro 10, 24-32.

  10. Merchán Cifuentes, M.A., Plaza López, I., Riquelme Galiana, R., Aguilar Mendoza, L., and Lopez-Poveda, E.A. (2001).  “Análisis de la densidad óptica en secciones semifinas: un método objetivo para la valoración de la inmunrreactividad celular,” Urol. Int. Inv., 6 (4): 301-308.

Books

  1. Lopez-Poveda EA, Meddis R, Palmer AR (Eds.) (2010). The Neurophysiological Bases of Auditory Perception. Springer, New York. Approx. 565 p., 225 illus. ISBN: 978-1-4419-5685-9. Buy this book.

  2. Meddis R, Lopez-Poveda EA, Popper AN, Fay RR. (2010). Computer models of the auditory system. Springer Handbook of Auditory Research, Vol. 35. Springer, New York. Approx. 350 p. ISBN: 978-1-4419-1370-8 . Buy this book.

  3. Lopez-Poveda, EA. (2002). Fundamentos de Estadística. (Ed. La Popular, Albacete, Spain). 143 pages. ISBN: 84-932498-6-6. Buy this book.

Book chapters

  1. Lopez-Poveda EA (2022). “Cochlear inner hair cell, Model,” in Jaeger D, Jung R (eds.) Encyclopedia of Computational Neuroscience, Springer, 2nd Ed. https://doi.org/10.1007/978-1-0716-1006-0_427

  2. Lopez-Poveda EA. (in press). "Psychoacoustics," in Oliver DL (ed.) Neurobiology of Hearing, Wiley.

  3. Johannesen PT, Pérez-González P, Kalluri S, Blanco JL, Lopez-Poveda EA. (2016). “Predictors of supra-threshold speech-in-noise intelligibility by hearing-impaired listeners,” in Proc. ISAAR 2015: Individual Hearing Loss: Characterization, Modelling, Compensation Strategies, Aug. 2015, Nyborg, Denmark. Edited by Santurette S, Dau T, Dalsgaard JC, Tranebjaerg L, and Andersen T. ISBN: 978-87-990013-5-4. The Danavox Jubilee Foundation, 2015.

  4. Lopez-Poveda EA. (2014). "Development of fundamental aspects of human auditory perception," in Romand R, Varela-Nieto I (eds.) Development of Auditory and Vestibular Systems, 4 ed., Elsevier, San Diego, Chapter 10, pp. 287-314.

  5. Meddis R, Lopez-Poveda EA. (2010). "Introduction," in: Meddis, Lopez-Poveda, Popper, Fay (eds.) Computer Models of the Auditory System. Springer Handbook of Auditory Research, vol. 35, Springer, New York, chapter 1.

  6. Meddis R, Lopez-Poveda EA. (2010). "Peripheral auditory system: from pinna to auditory nerve," in: Meddis, Lopez-Poveda, Popper, Fay (eds.) Computer Models of the Auditory System. Springer Handbook of Auditory Research, vol. 35, Springer, New York, chapter 2.

  7. Wilson BS, Lopez-Poveda EA, Schatzer R. (2010)."Use of auditory models in developing coding strategies for cochlear implants," in: Meddis, Lopez-Poveda, Popper, Fay (eds.) Computer Models of the Auditory System. Springer Handbook of Auditory Research, Springer, vol. 35, New York, chapter 9.

  8. Lopez-Poveda EA, Johannesen PT. (2010). "Otoacoustic emission theories can be tested with behavioural methods," in: Lopez-Poveda EA, Meddis R, Palmer AR (eds.). The Neurophysiological Bases of Auditory Perception. Springer-Verlag, New York, chapter 1.

  9. Recio-Spinoso A, Lopez-Poveda EA. (2010). "Basilar membrane responses to simultaneous presentations of white noise and a single tone," in: Lopez-Poveda EA, Meddis R, Palmer AR (eds.). The Neurophysiological Bases of Auditory Perception. Springer-Verlag, New York, chapter 2.

  10. Lopez-Poveda EA, Alves-Pinto A, Palmer AR. (2007) "Psychophysical and physiological assessment of the representation of high-frecuency spectral notches in the auditory nerve," in Hearing: From Sensory Processing to Perception, edited by B Kollmeier, G Klump, V Hohmann, U Langemann, M Mauermann, S Uppenkamp, J Verhey.  Springer-Verlag, Heidelberg. pp. 51-59

  11. Wilson BS, Schatzer R, Lopez-Poveda EA. (2006). "Possibilities for a closer mimicking of normal auditory functions with cochlear implants," in Cochlear Implants, 2nd Edition, edited by SB Waltzman and JT Roland, Thieme Medical Publishers, New York, 2006, pp. 48-56.

  12. Lopez-Najera, A, Meddis, R, Lopez-Poveda, EA.  (2005).  "A computational algorithm for computing non-linear auditory frequency selectivity: Further studies," in Auditory Signal Processing:  Physiology, Psychoacoustics, and Models, eds. Pressnitzer, D., de Cheveigné, A., McAdams, S., and Collet, L. pp. 14-20, (Springer, New York). 

  13. Lopez-Poveda, EA, Plack, CJ, y Meddis, R.  (2002).  “Cochlear compression as a function of characteristic frequency in listeners with normal hearing,” Proc. Of the Meeting of European-Japanese Acoust. Soc. Sevilla 2002. I.S.B.N.: 84-87985-07-6.

  14. Lopez-Poveda, EA.  (1999).  "Redes neuronales artificiales y modelos biologicos de Redes neuronales: dos formas distintas de simular el sistema nervioso," in Perspectivas de la Neurociencia edited by Alonso, JR, Arevalo, R, y Garcia Briñon, J.  (Tesitex, Salamanca, Spain), pp. 147-167.

  15. Lopez-Poveda, EA, O'Mard, LPO, and Meddis, R.  (1998). "A revised computational inner hair cell model" in Psychophysical and Physiological Advances in Hearing, edited by Palmer, A, Rees, A, Summerfield, Q, y Meddis, R. (Whurr Publishers Ltd, London, UK), pp. 112-121.

Dissertations

  1. Alejandro Hernández Martín. (2020). A binaural hearing aid inspired by the contralateral medial olivocochlear reflex. Doctoral thesis. University of Salamanca. Supervisor: Enrique A. Lopez-Poveda.

  2. Miriam I. Marrufo-Perez. (2020). Interaction between physiological and cognitive processes involved in adaptation to noise in speech recognition. Doctoral thesis. University of Salamanca. Supervisor: Enrique A. Lopez-Poveda.

  3. Patricia Pérez-González. (2017). Relationship between cochlear mechanical dysfunction and speech-in-noise intelligibility for hearing-impaired listeners. Doctoral thesis, University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda.

  4. Peter T. Johannesen (2013). "Physiological and psychoacoustical estimation of human cochlear input/output curves." Doctoral thesis. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda

  5. Aguilar, E. (2013). "Caracterización del efecto del reflejo olivococlear contralateral sobre la respuesta coclear humna." Doctoral thesis. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda

  6. Martín Méndez, J. (2010). "Audioaid modo test." Final year project. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda and María Moreno García.

  7. Pérez-González, P. (2009). "Audioaid modo de entranamiento." Final year project. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda and María Moreno García.

  8. Alves-Pinto, A. (2007). "Psychophysical and physiological assessment of the representation of high-frequency spectral notches in the auditory nerve." Doctoral thesis. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda. Mark: Summa Cum Laude.

  9. Barrios-Rodriguez, L.F. (2005). "Estimación psicoacústica de la respuesta de la membrana basilar en la región apical de la cóclea". Master Dissertation. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda.

  10. Lopez-Najera, A. (2005). Simulación computacional de la respuesta de la membrana basilar. Doctoral thesis. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda. Mark: Summa Cum Laude.

  11. Alves-Pinto, A. (2003). "Detección de la información espectral auditiva de alta frecuencia". Master Dissertation. University of Salamanca, Spain. Supervisor: Enrique A. Lopez-Poveda and Manuel S. Malmierca.

  12. Lopez-Poveda, EA. (1996). “The physical origin and physiological coding of pinna-based spectral cues" Doctoral dissertation. Loughborough University, UK. Supervisor: Ray Meddis.